Quantum dot-based theranostics.
نویسندگان
چکیده
Luminescent semiconductor nanocrystals, also known as quantum dots (QDs), have advanced the fields of molecular diagnostics and nanotherapeutics. Much of the initial progress for QDs in biology and medicine has focused on developing new biosensing formats to push the limit of detection sensitivity. Nevertheless, QDs can be more than passive bio-probes or labels for biological imaging and cellular studies. The high surface-to-volume ratio of QDs enables the construction of a "smart" multifunctional nanoplatform, where the QDs serve not only as an imaging agent but also a nanoscaffold catering for therapeutic and diagnostic (theranostic) modalities. This mini review highlights the emerging applications of functionalized QDs as fluorescence contrast agents for imaging or as nanoscale vehicles for delivery of therapeutics, with special attention paid to the promise and challenges towards QD-based theranostics.
منابع مشابه
Fault-tolerant adder design in quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملAnalytical Investigation of Frequency Behavior in Tunnel Injection Quantum Dot VCSEL
The frequency behavior of the tunnel injection quantum dot vertical cavitysurface emitting laser (TIQD-VCSEL) is investigated by using an analyticalnumericalmethod on the modulation transfer function. The function is based on therate equations and is decomposed into components related to different energy levelsinside the quantum dot and injection well. In this way, the effect of the tunnelingpr...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملOptimized Design of Multiplexor by Quantum-dot CellularAutomata
Quantum-dot Cellular Automata (QCA) has low power consumption and high density and regularity. QCA widely supports the new devices designed for nanotechnology. Application of QCA technology as an alternative method for CMOS technology on nano-scale shows a promising future. This paper presents successful designing, layout and analysis of Multiplexer with a new structure in QCA technique. In thi...
متن کاملNovel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata
Application of quantum-dot is a promising technology for implementing digital systems at nano-scale. Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 2 1 شماره
صفحات -
تاریخ انتشار 2010